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Abstract. We applied the generalised master equation ( G M E )  to the analysis of the object 
function, s(  t ) ,  which describes the motion of the tunnelling particle in a double-well system 
coupled to a reservoir consisting of independent bosonic-type elementary excitations. First, 
using the ‘unrelaxed’ initial condition and a suitable projection operator we give the exact 
formal solution of the G M E .  Then, the memory operator in the G M E  is explicitly calculated 
in the weak-tunnelling regime and the function s( 1 )  is obtained. An independent derivation 
is given which enables us to obtain the exact expansion of the function s ( t )  by means of 
a purely algebraic method. This expansion forms a basis on which our G M E  method and 
the well known functional-integral approach are compared: the GME-weak-tunnelling 
approximation is shown to be identical to the commonly used non-interacting-blip approxi- 
mation ensuing from the functional-integral method. A new approximation is analysed 
which is weaker than the non-interacting-blip one. 

1. Introductory remarks: definition of the model 

Let us consider the motion of a particle (single degree of freedom) in a double-well 
potential. The quantum particle has the possibility of tunnelling through the potential 
barrier to the other well and will do  so with a frequency A. In addition to that, the 
particle interacts with a reservoir. As a result of the specific form of the interaction 
(see below), the motion of the particle is connected to the local changes in the reservoir, 
i.e. with the motion of the ‘cloud’ of reservoir excitations. This leads to the destruction 
of the coherent motion and  to a dissipative behaviour. On the whole, the tendency to 
coherent oscillatory motion competes with that to localisation. 

The dynamics of the dissipative double-well system was recently reviewed to be 
an  extremely relevant problem in several areas of physics [l]. Let us mention some 
of them: dynamics of the protonation in organic compounds [ 2 ] ,  spin-phonon relaxa- 
tion phenomena [3], transitions in chiral molecules [4], the question of observing a 
quantum coherence effect on a macroscopic level in S Q U I D  rings [ 5 ] ,  description of 
para-electric impurities with phonon coupling [ 6 ] .  It is believed that the common 
features of these dynamical problems can be adequately described using the Hamil- 
tonian 

1 1 - H = A N  0 1 R + S 0 R + 1s 0- H R . 
h h (1) 

Here the pseudospin operator N = ~ ( ~ + ) ( - ~ + ~ - ) ( + ~ )  describes pure oscillatory motion 
of the particle between two sites I+) (the ‘left’ well) and  I - )  (the ‘right’ well) and A is 
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the bare tunnelling frequency. The particle-reservoir interaction is linear in the particle- 
coordinate operator-the continuous coordinate is replaced by the operator S = +( /+) 
( + ~ - ~ - ) ( - ~ )  whose spectrum displays only two discrete values --i, +i. H R ,  lR  and R 
are reservoir operators. 

Usually, the above-mentioned situation leads to the assumption that the reservoir 
can be described by independent bosonic-type elementary excitations. The number of 
modes, M ,  is assumed to be very large. Further, the operator R in (1) is supposed to 
be linear in the lowering and  raising operators of these excitations. Thus we have 

M M 1 ; H R  = 1 w,BjBi R =  1 K ~ ( B : + B ~ ) .  
i = l  i = l  

For the model to be completely determined, one needs an explicit prescription for the 
coupling parameters K ~ ,  i = 1, . . . , M and for the phonon frequencies w i t  i = 1 , .  . . , M. 
Instead, one assumes that the number of degrees of freedom of the reservoir tends to 
infinity and  one introduces the strength function [7,8] 

M 

y ( w ) =  lim 1 K : s ( w - - w ~ ) .  (3) 
M-+= , = I  

The assumption of an  infinite reservoir is then implicit in the replacements of sums 
by integrals. This will be done at an  appropriate stage of calculation and we shall use 
the specific form of the strength function according to the formula (Ohmic coupling, 
[9,8l) 

The parameter y measures the overall strength of the coupling and  the cut-off frequency, 
U , ,  gives the relevant interaction bandwidth. 

The primary interest of the dynamical studies connected with Hamiltonian (1) is 
the calculation of the mean value of the particle coordinate as a function of time. 
Given the initial condition for the whole particle-plus-reservoir density matrix, p ( O ) ,  
one desires to calculate the real function, s ( t ) ,  the normalised mean value of the 
particle coordinate 

with s(0) = 0 and  s( t )  E (-1, + l ) .  Here and below, the Hilbert-Schmidt scalar product 
is used: (A/B) =Trs+R(A'B). 

From the theoretical point of view one is thus faced with the typical open-system 
dynamics problem. The exact solution of the problem is not known and approximations 
are inevitable. The theoretical methods used fall into the following main categories: 
unitary transformation method (i.e. partial diagonalisation of Hamiltonian ( l ) ,  (2) by 
means of the polaron transformation [ 101 or the Fulton-Gouterman transformation 
[ 1 I]), variational approaches [ 12, 131, instanton methods [ 141, G M E  approach [9, 15, 
161, path integral methods [ l ,  17, 181 (usually in connection with the so-called 
non-interacting-blip approximation). 

Apart from this very broad recent discussion, several open problems survive. It 
turns out that the model is extremely sensitive to possible approximations. It is the 
question of asymptotic localisation, above all, that dot=? not seem to be convincingly 
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solved. Other problems are the temperature dependence of the function s(  t )  and the 
role of the strength function, describing the particle-reservoir interaction in the infinite 
reservoir limit. The behaviour of the function s(  t )  in the asymptotic region was shown 
to be sensitive to the low-frequency behaviour of the strength function. 

In this paper we use the time-convolution G M E  and our objective is to obtain its 
solution in the experimentally interesting weak-tunnelling arbitrary coupling case. We 
shall formulate the technical parts of the calculations at the superoperator (rather than 
operator) level. The superoperators will be designated by script letters, e.g. 2, A, 3, 
.Y. In 0 2, this approach gives us a general structure of the exact solution, equation 
(16). This is then used in P 3 to obtain a weak-tunnelling expansion of the G M E  memory 
operator and, subsequently, the approximative forms of the function s( t ) .  Eventually, 
in the discussion, the interpretation of these results lead us to a connection between 
the G M E  method and the functional-integral approach. As for the numerical calcula- 
tions, we need the numerical procedure for the inverse Laplace transformation. We 
have adapted the one from [19,20] and employed it to the inversion of the basic 
formulae (26) and (32). 

Our  problem, we recall, is a typical initial-value dynamical one. It should be noted 
that we d o  not deal with the equilibrium state correlations [8]; nor d o  we study the 
interesting question whether in the limit t + CO the state of the joint system converges 
to its equilibrium state. 

2. The GME and its formal solution 

The Liouville equation for the double-well-plus-reservoir density matrix, p(  f ) ,  reads 

Here H is as in (1) and  2 = ( l / h ) [H ,  *] is the Liouville superoperator [21]. We shall 
use the term ‘operator’ since the distinction between operators and  superoperators is 
given by the symbols used (e.g. 2 as opposed to L). Introducing the basis 11) = ll-)(-l), 
12) = 1 1  + ) ( + I ) ,  13) = 1 1  - ) (+I) ,  14) = I /  +)(-I) in the Liouville space of the particle (notice 
the ordering of the basis) and using the scalar product (AslBs) = Trs(AIBs) the 
Liouville operator can be expressed in the form of a 4 x 4 matrix whose elements are 
operators in the reservoir space. More specifically, one obtains 

3 9, + 2 N  = diag ( 2 R  - Y, 2 R  + Y, 2 R  - %!,2R + 2 ) + AA 0 9 R  ( 7 )  

where diag(*, *, *, *) is a diagonal matrix. The diagonal term TD corresponds to TsR 
and Ss@TR, i.e. to the second and the third part of (1). We have introduced the 
assignment T = $ [ R ,  *I, 3 = i{R, *} with R as in (2) and with {X, Y} being the anticom- 
mutator of the operators X and Y. The matrix A in ( 7 )  is 

0 0 -1 +1 

A=- +; :; +; -:]. / 0 0 -1 + l \  
1 0 0 +1 -1 
2 -1 $1 

A=- 

-1 : :I, 
At this point, we must specify the initial condition to be used in connection with 

(6). We assume that the particle is initialy localised in the ‘left’ well and  the reservoir 
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is in the equilibrium state up  to t = 0 when the double-well system is joined to it [22]. 
Thus the variables of the particle and those of the reservoir are initially uncorrelated. 
The whole initial condition then reads ( P  = 1/ ( kl3 T ) )  

It should be emphasised that (9) is not the equilibrium density matrix of the whole 
particle-plus-reservoir system pEQVCC exp(-PH) nor is it the state of the localised 
particle with the boson reservoir relaxed around it [ 1, 161. 

It follows from the above formulation that we are not interested in the complete 
information carried by the particle-plus-reservoir density matrix p (  t ) .  The relevant 
information describes the time evolution of the double-well system per se including, 
of course, all consequences of the interaction with the reservoir. This information is 
represented by the reduced density matrix a ( f )  = T r ~ [ p ( f ) ] .  Provided the reduced 
density matrix a( t )  is known, the object function (5) can be expressed as 

s ( t )  = = ( l / a ( f ) ) - ( 2 l a ( t ) ) = 2 ( 1 l a ( t ) ) - l .  
(SIU(0)) 

Here, the symbol ( * I  *) means the scalar product in the particle Liouvile space. 
The above-mentioned reduction of the information is formally peerformed using 

a suitable projection operator [21,23]. In view of our choice of the initial condition, 
equation (9), it is reasonable to employ the projection operator 90=4sOP'o with 
Po = 17~R)(lRl, where 7~~ was introduced in (9). The point is that with this projector 
one gets 9 o l p ( 0 ) )  = I p (0 ) )  and, consequently, the inhomogenous term in the convol- 
ution-type G M E  [24-261 is equal to zero. For later use it is convenient to introduce 
also the orthogonal projectors 9, = 4,04, - 9" and PI = .aR - Bo. 

and 9, on both sides of the Liouville equation (6) one 
acquires a system of coupled equations for 9 o l p (  f)) and 911p( t ) ) .  The solution of this 
system leads directly to a closed integrodifferential equation for the reduced density 
matrix l m ( t ) ) ,  i.e. to the G M E  [24-261 

Applying the projector 

(11) 1"' d 
- l a ( f ) ) = - i L H l a ( t ) ) -  X( t - f ' ) Im( t ' ) )d t '  
d t  

where the memory operator, Y l ( t ) ,  is given by the formula 

X (  t )  = (1 R I  gOT exp( -i t912?91)9, Y901 7~~ ). (12) 

In the next step we make use of some simple properties of the operators involved. 
Utilising the respective definitions one can prove the equalities TRPO = POTK = 0,  
9oTSR90=0, PIF=  9 and Pl.2R =YR.  Then, using these formulae, the memory 
operator acquires the final form 

X ( t )  = (l,ldiag(O, 0, -92, +%) exp(-itW) diag(-F, +F, -92,  IT^) 

w E w, + w\ = diag(3R - ~ , T R  f 9,2?~ - PI%!, 3~ + 91% ) + A& 0 9 ~ .  

(13) 

(14) 

where the operator W in the exponent is 

Let us introduce the notation k , , ( t )  = ( i I X ( t ) l j )  for the matrix elements of the 
memory operator; k , , ( t )  are already c-number functions of time. The elements k , { ( r )  
and k , ) ( t )  j = 1 , .  . . , 4  are clearly seen to be zero. Furthermore, it follows from the 
obvious properties ( l l a ( f ) ) + ( 2 ~ a ( t ) )  = 1, (3 /a( t ) )*  = (41a(t)) that kF, ( t )  = k4,(r) ,  
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k & ( t )  = k4?( t ) ,  k & ( t )  = k4,( t )  and kT4( t )  = k 4 3 ( t ) .  Thus the whole memory operator is 
determined by the eight real functions of time. It will be useful to take them as 

v l ( t )  = Re[k3,(t)+k34(t)l  

v 2 ( t ) =  Re[k33(O-k34(t)l 

U , ( t )  = W k 3 ( t ) + k 3 4 ( t ) I  

v 4 ( t )  = Im[k33(t)-k34(t)l  

w l ( t )  = Re[k31( t )+k32(Ol  

w 2 ( 0  = Re[k3,(r) - M f ) l  
w 3 ( t )  = Im[k , , ( t )+  k32(t)l 
W 4 ( t )  = Im[k.,,(t) - k3*(01. 

(15)  

Before we embark on the calculation of the functions k i , ( t )  and/or  v , ( t ) ,  w , ( t ) ,  it 
is useful to employ the known global structure of the matrices A, X ( t )  and formally 
solve the GME.  Applying the Laplace transformation on both sides of (1 1) one acquires 
a system of four algebraic equations for the functions ( i l v ( z ) ) ,  i = 1, . . . , 4, i.e. for the 
Laplace transforms of the functions ( i l a ( r ) ) ,  i = 1 , .  . . , 4 .  This system can be readily 
solved; leaving out the details of this algebra, we write down the final formula for the 
Laplace transform of the object function, s( t ) :  

Here U,, w,, i = 1 , .  . . , 4  are meant as the Laplace transforms of the functions (15). 
The formulae (15) and  (16) constitute the starting point for the further calculation. 

They give the Laplace transform of the function s ( t )  in terms of the matrix elements 
of the memory operator. In the forthcoming section we shall develop a technique for 
the explicit evaluation of these matrix elements. Eventually, in the last section, the 
inverse Laplace transform of the expressions stemming from (16) will be performed 
and  the desired function, s( t ) ,  acquired. 

3. The weak-tunnelling approximation (WTA) 

In  dealing with the memory operator (13), the principal difficulty lies in the non- 
diagonal nature of the operator W in the exponent. Furthermore, the matrix elements 
of the operator W, by their own, are non-commuting reservoir operators. These facts 
hinder the exact treatment of the exponential operator exp(-itW) in (13). At this 
point an  approximation is unavoidable. 

In many cases of physical interest the particle-reservoir coupling cannot be assumed 
to be weak. On the other hand, the tunnelling parameter, A, is small when the potential 
barrier between the two wells is sufficiently high, i.e. when the overlap between the 
localised states I - )  and I+) is weak. I f  this is indeed the case we can express the 
memory operator (13) and  (14) as a power series in the tunnelling parameter and, 
subsequently, take into account just several lower terms. 

To this end, we employ the identity which is well known from perturbation theory 
[261 

exp[ -i t ( W, + +Wh8 ) ] = ex p[ -i t W, ] - i ex p[ -i ( t - t ’) U’,] exp[ -i t ’ W D  ] d t ’ + . . . 
(17) 

I,: 
and use it in (13). As a result, we obtain the A expansion of the memory operator: 

(18) 
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The first term of this series is 

YC‘’’( t )  = diag(0, 0, k::’( r ) ,  kyi’( t ) ) ,  

k f ) = [ ki:’( t ) ] * = ( 1 R 1 2 ex p [ - i f ( 3~ - 9 3 ) ] 9 1 T R  ) . 
The second term reads 

l o  0 0 o \  

with the matrix elements 

k “ ) ( f ) }  =+lo‘ ( 1 R 1 3  e x p [ - i ( t - t ’ ) ( 3 e , - 9 ’ , ~ ) ]  eXp[ - i f ’ (TRTy) ]y - / rR)  dt’  (22) 
k!?( t )  

and kk:’( t )  = [ k!’,’( t)]”, 
Now, it turns out under a closer examination of the series (18) that all its even 

terms X(’“’(t) ,  n = 1 , 2 , .  . . , have their non-zero matrix elements only in the lower 
diagonal 2 x 2 block. O n  the other hand, all non-zero matrix elements of the odd terms 

( t ) ,  n = 0, 1, . . . , f i l l  the bottom-left non-diagonal 2 x 2 block as in (21). Stating yp2n+i) 

it differently, the A expansion of the real combinations v , ( t ) ,  i = 1, , . , , 4  contains only 
even powers of the tunnelling parameter, whereas the functions w,( t ) ,  i = 1, . , . , 4  are 
odd  in the parameter A. Eventually, the functions U,, w, being substituted into the 
basic formula (16), the exact function s(  t )  is clearly seen to be even in the parameter 
A. 

After these preliminary considerations we take just the first term (20) of the series 
(18). For definiteness, let us call the ensuing approximation the weak-tunnelling 
approximation of zeroth order (the WTA“”). In this approximation, confronting the 
definitions (15) with the operator (20), one immediately obtains wl(  t )  = 0, i = 1, . . . , 4 .  
Further, as will be seen below, the function ky ; ) ( t )  is real, i.e. u , ( t )  = v,(t) = O  and 
u l (  t )  = U,( t )  = kg’( t ) .  On the whole, it is sufficient to calculate the function U,( t ) .  

In considering this function, that is the matrix element (20), one should notice that 
it is the projector 9, in the exponent which makes a direct evaluation exceedingly 
cumbersome. One feels, however, that the function u , ( r )  should be connected, in a 
way, with the more simple function 

t )  = [ k::’(t)]*. 

p ( f ) =  (1Rl exp[-it(ZR --%)]1rR). (23) 

Such a connection actually exists-we deal with it in appendix 2. It follows from the 
theorem therein that the Laplace transforms of the functions in question fulfil the 
crucial equality 

1 

Having thus expressed the function u , ( z )  through the Laplace transform of the 
more transparent matrix element, equation (23), we now focus on the evaluation of 
the function p (  t )  itself. To this end, the operator in the exponent, LfR - 3, is expressed 
as a sum of commuting operators YR, - %,, i = 1 , .  . . , M ,  each for one individual 
reservoir mode. Then, the three operators ZR,, 2, and 9, = ~ K , { B :  - B,, *} are shown 
to form the Lie algebra, that is they have closed commutation relations. Using this 
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observation, it is possible to factorise the operator exp[ - i t (  TR - 9)] and, subsequently, 
perform the averaging in (23). On the whole, this procedure yields (see appendix 1 
for some more details) 

At this point, we may collect all the above properties of the functions U,( t ) ,  w,( t ) ,  
and use them in (16). After this substitution is done, the expression for s(  z )  simplifies 
extremely: 

1 
z + A'p( z )  ' 

s ( z )  = 

This is our final result in the WTA'"'-the calculation of the object function is reduced 
to the evaluation of the direct Laplace transform of p (  t ) ,  equation (25), and subsequent 
inversion of s ( z ) ,  equation (26). 

We now turn our attention to the weak-tunnelling approximation of the first order 
(wTA")) which takes into account both the first and the second term of the series (18). 
It follows from the above discussion, we recall, that the functions U,( t ) ,  i = 1, . . . , 4  
will not be affected in the WTA"), that is they will have the same form as in the W T A ' ~ ) ) .  

Presently, according to (21), we only have to deal with the functions k\:)( t )  and k:i'( t ) .  
Below, we give merely some basic points of this procedure. 

First, we get rid of the projector PI in expressions (22). We employ once more 
the theorem from appendix 2 and we acquire the equalities 

where the function p ( t )  is defined in (25) and 

In  the last formula we have used the notation 

. d i ( r )  = exp[-ir(zR i S)] 933,(t)=exp[-it(2R *%)I .  (29) 

These reservoir operators will play a fundamental role in the next section. 

Lie-algebraic factorisation-some hints are given in appendix 1). For example 
Second, we evaluate explicitly the matrix elements in (28) (again, one uses the 

( l R l 9 + ( t -  t ' ) ~ - ( t ' ) l 7 ~ ~ ) = p ( t - t ' )  exp{i[fl(r- t ' ) - f l ( t ) + f , ( t ' ) l }  (30) 

where 

M 

f l ( r )  = c (e); sin w,t. 
, = I  

The functions f , (  t ) ,  f 2 (  t )  are extremely important as they control, in a sense, the whole 
physics of the present model. We shall see that it is only through them that the reservoir 
parameters K , ,  w,  and the temperature enter the exact solution. 



3934 P Chvosra 

Collecting again all the above results, one gets s ( z )  from (16) in the fairly compact 
form 

1 
z + A2zq( z )  

s ( z )  = 

where 

This concludes the calculation in the WTA"). 

Summarising, in this section the calculation was based on the A expansion of the 
memory operator. Our main results, (26) and (32), correspond to the truncation of 
the series in question after the first and the second term, respectively. However, while 
these procedures may well be accepted methodologically, they d o  not evoke a physical 
interpretation of the above truncation. A logical question to ask, for instance, is that 
of physical differences between the WTA'") and WTA"). Surprisingly, the search for a 
physical motivation led us to the connection between the G M E  method and the 
functional-integral approach. 

4. Discussion of the results 

On first glancing at the exact formal solution (16) as well as at the results in the WTA'"', 

equation (26), and  in the wTA(", equation (32), it becomes evident that the physical 
limits A +  0 and y + 0 are properly described. Actually, if y = 0, then s( t )  = cos A t  and 
the particle coherently oscillates between the sites I-) and I+). On the other hand, 
A = 0 gives s( t )  = 1, i.e. the particle does not move at all. Using the scaling property 
of the inverse Laplace transformation the object function, s ( t ) ,  is seen to depend on 
the time only through the combination T =  tw, and, when the scaling parameter w ,  is 
fixed, the whole dynamics is governed solely by the thr:e dimensionless parameters: 
d = A / w , ,  T =  y / w c  and ?= ( p h w , ) - ' .  The parameter A measures the tendency to a 
coherent motion, the parameter T that to a localisation and ? is the reduced temperature 
of the reservoir. 

As we have mentioned above, the functional-integral method was shown to be a 
very efficient tool in connection with the double-well model. Within this technique, 
one can start with the clear physical picture of a tunnelling object in an  (effective) 
potential which possesses two degenerate minima. Several authors [ l ,  34,361 have 
investigated the circumstances under which the dissipative dynamics in a double-well- 
shaped potential may be reduced to the present double-state formulation. This dis- 
cussion connects the parameters of the original problem to the above parameters A, 
y, T and w,. The imaginary-time functional-integral approach was pioneered by 
Caldeira and  Leggett [35]; for a thorough analysis of this thermodynamics method 
and  for the detailed list of references see the recent paper by Gorlich and Weiss [30]. 
In the dynamical studies, one works with the real-time functional-integral scheme 
which is based on the Feynman-Vernon theory [28]. This formulation has already 
been applied to the calculation of the double-well [ l ,  17, 18,321 and  multiwell [31] 
dynamics. Technically, both approaches are deceptively similar. However, as stressed 
in [30], one has to test the domains of validity for formally identical approximations 
separately in both schemes. Thus, e.g., the domain of parameters for which the 
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non-interacting-blip approximation (see below) is justified was shown [30] to be smaller 
in the imaginary-time formulation. 

The essence of the real-time functional-integral technique consists in the exact 
calculation of the influence functional [28] and  subsequent summation over all possible 
ways (=paths) of the time evolution leading from a given initial condition to a final 
state. As a result, one obtains the A expansion of the function s( t )  in the form [ 1, 17,321 

1 { ' d t 2 n  {or'tdt2n-l ...I0 t 2 d t , s ( " ) ( t l  , . . . ,  tz, , ;path) (34) s ( t ) = l +  (-iA)2n- 

where np is the number of paths with 2n  transitions between the subspace of the 
diagonal elements Il), 12) and  that of the non-diagonal elements 13), 14). The functions 
s ' " )  are specific for a given path and will be given below. 

We have found an  independent derivation of this exact functional-integral 
expansion which rests solely on the algebraical properties of the reservoir operators 
d,(t), g3,(t) (cf (29) for their definition). For reasons of space we simply sketch the 
derivation here. Further details and extensions will be given elsewhere. 

Let us return to the original Liouville equation (6). We decompose the Liouville 
operator as =Y = =YD + =YN where =YD E =YsR + 9, @=YR and = AA @.eR. Further, 
we make use of the perturbation expansion (17) with 2,, instead of WD and LfN 
instead of .Wk. It then takes several simple steps to handle the exact formal solution 
of the Liouville equation, l p ( t ) )  = exp(-it=Y)lp(O)), and arrive at the expansion (34) 
with the functions s'") given as 

s'")(  t , ,  . . . , t z n  ; path) 

Z r  

n = l  np pdtha 0 

(35) - S ( n )  

= (1 R 

= ( f l , .  * e ,  t 2 n ;  Q 1 ,  * e ' ,  a n - 1 ;  P I ,  * * ' ,  P n )  

) % 3 p , ,  ( bn )&at , - ,  ( an-  I )  . . . ( a , )  ( b l  )d-(aO)l n R  ) *  

In keeping with the terminology from [ 11, the operator 9Ip,( b, )  represents the ith blip, 
i = 1, . . . , n, 93, = *l being its sign and 6 ,  = t2 ,  - t2,- ,  its length. Thus there are n 
time-ordered blips in the matrix element (35). Similarly, think of the operator d, ( a , )  
as of the ith sojourn, i = 0, .  . . , n, where cy, = *l is its sign and a, = t2 r+ l  - t 2 ,  is its 
length. The zeroth and  the nth sojourns have the sign -. 

Now, it suffices to evaluate the matrix element in (35). First, one should note that 
the whole matrix element can be cast into the form of the product of M matrix elements, 
each for one individual mode of the reservoir. The calculation of a one-mode matrix 
element gives an exponential (see below). Hence, in the final product, the summation 
over the modes occurs in the exponent which is then included in the functions f l ( t )  
and  f z (  t ) .  For a moment, let us confine ourselves to a fixed one-mode matrix element. 
Its calculation proceeds through the following four steps. 

(1) Using the formulae ( A l . l )  from appendix 1, we can factorise the one-mode 
exponential operators d*,( t ) ,  %*,( t ) .  In other words, we can write them as a product 
of the two exponentials. The first exponential wil be of the form exp(cy.YR,) and the 
second will have only the operators 9,, 9, (for de,) or only the operators T,, %, (for 
93*,) in the exponent. 

(2) As ( lRlexp(azR,)  = (1R/, one wants to get all operators of the form exp(aTR, )  
to the left. This is done using the formulae (A1.2) from appendix 1. 

(3) Similarly, as both (IRIT, and (1Rl%, are equal to zero, one commutes all 
operators of the form exp( 4T, + +%,) to the left. The formula (A1.3) shows how to 
do it. Loosely speaking, for a given blip, all the previous sojourns have to be commuted 
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over it (towards ( 1 R l ) .  This gives the 'interaction' of this blip with the previous 
soujourns-see the factors A:"', A:"' in the final formula below. 

(4) Eventually, one has only some element of the form (l,lexp(692+.s.Y)IrR). 
This is evaluated by means of the averaging prescription (A1.4) .  In  this manner, the 
temperature-dependent factors B;" ' ,  Bit" are generated in the final formula (36). It is 
only within this last step that the specific structure of the reservoir density matrix enters 
the calculaticii. 

Leaving out all further details, we now write the final result in a fairly compact form: 

(36) si I1 j P n )  = A:")A:")Bj")BIfl) ( [ I ,  * .  . , f2,,; Q I , " .  , awl;  P I , .  . . , 
where 

~ , a , - , [ f ~ ( t ~ ,  - ~ ~ , - 1 ~ - ~ 1 ~ ~ ~ 1 - ~ ~ , - ~ ~ + ~ 1 ~ ~ ~ , - 1 - ~ 2 , - 2 ~ ~ )  (37) 

(40) 
It is clear from the above sketch that the various factors in (36) can now be regarded 

as 'interactions' between the blips, and between blips and sojourns. Thus the factor 
B\") expresses, for an  arbitrary given blip (the summation over i in the exponent), the 
self-interaction of this blip. The factor Bit" is an  interaction between different blips. 
For a given pair of the blips (index i and j in the summation), this interaction depends 
on the relative sign PIP, .  A given blip interacts only with the previous ones. The 
factors A:") and AY' represent the interaction of an  arbitrary given blip (the summation 
over i )  with all preceding sojourns. For this fixed blip, the former factor describes its 
interaction with just the neighbouring previous sojourn whereas the latter describes 
the interaction with all other previous ones. 

The aim of the following discussion is to bring out the meaning of our main results 
(26) and (32) in the light of the above exact expansion as given by (34) and (36)-(40). 

First, consider the result of the WTA")', equation (26). The Laplace transform s (z )  
can be written as a sum of the infinite A series 

1 1 "  
2 Z , , = I  

s (z )= -+ -  1 (-iA)?" 

Taking the inverse Laplace transform, one readily arrives at the series, which is 
equivalent to the result (34), (36)-(40) provided one puts Ai"' = 1, A:"' = 1 and B;'" = 1, 
n = 1,. . . , therein. More particularly, one obtains 

s ( t )  = 1+ ,I = I (-iA):'' i, 'dfz,, ~ l l r " '  dt,,,-, . . . 1: df lp (b , l )p (b , , - I ) .  . . p(b1) (42) 

where the one-blip contribution, p (  t ) ,  is defined in (25) and b, = r r ,  - f 2 , - ,  as above. 
Accordingly, in order to get the WTA'~) '  result from the exact solution, one has to neglect 
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all interactions between separate blips and all interactions between an  arbitrary given 
blip and all sojourns preceding this blip. Thus the WTA")) is equivalent to the approxima- 
tion which is commonly referred to as the non-interating-blip approximation, but which 
would be called, more properly, the isolated-blip approximation. 

Next, let us consider the wTA(". Expanding again the respective result from the 
preceding section, equation (32), one has 

1 1 "  
z Z , = '  

s ( z )  =-+- c (-iA)2"[q(z)]" (43) 

cc 

s ( t ) =  1+ (-iA)'" [ ' d t n  [' 'I d t n - l . .  . [O"dtl q ( b , ) q ( b , - I ) .  . . q ( b , ) .  (44) 

It takes a little effort to devise a tricky substitution and to show that the last formula 
is equivalent to the expansion (34), (36)-(40) provided we set A$'" = 1 and B y ' =  1, 
n = 1 , .  . . , therein. In other words, in the WTA"', one takes into account not only the 
independent-blips factor Bin'= 1 (as in the WTA"'), but also the interaction of an  
arbitrary given blip with just the previous sojourn. Thus the wTA(" could be referred 
to as the isolated blip-previous-sojourn pairs approximation. 

As an  example, let us consider the term n = 1 in the exact expansion (34), (36)-(40). 
We have only one blip, i.e. the factors Ai' ) ,  Bi ' )  are equal to unity by their definition. 
Further, we have only one blip-preceding-sojourn pair-the first blip and the zeroth 
sojourn. It follows from the above arguments, as well as from the direct evaluation 
that, in the WTA'", one gets the exact form of the term s'" whereas the WTA") already 
gives this term approximately. For n = 2 one has two blips and two blip-preceding- 
sojourn pairs. In this case, both the WTA'") and WTA") yield approximate forms of the 
contribution s"'. As for the WTA"), the interaction between the both blips as well as 
the correlation between the second blip and the zeroth sojourn are not described in 
this case. 

More generally, an important conclusion emerges. Taking the first n terms in the 
A expansion of the memory operator, that is invoking our WTA'"- ' ) ,  means, in terms 
of the functional-integral approach, that one takes into account the inner interactions 
within the k clusters of neighbouring blips and  sojourns, where k = 1 , .  . . , n. Further- 
more, one  feels from this general argument that there could be a qualitative distinction 
between the WTA'" results and the WTA") ones. In  the latter approximation, a given 
blip feels the preceding one and  thus all the blips are, in a way, connected. Intuitively 
speaking, this observation could affect the conclusions concerning the asymptotic 
behaviour of the function s ( t ) .  

The non-interacting-blips approximation and its range of validity has been 
thoroughly investigated in [l,  18,321. Here, we merely want to comment on the relation 
between the WTA'") and WTA").  It follows from the comparison of the final formulae, 
(26) and  (32), that, in the WTA"), the isolated blip function r ( z ) = p ( z ) / z  plays the 
same role as the isolated-blip-previous-sojourn function q ( z )  in the WTA"'. Switching 
into the time domain, one is faced with the comparison of the functions r (  t )  and q(  t )  
where 

I1 = 1 0 0 

r (  t )  = p (  t ' )  d t '  (45) 

4 ( f )  = p ( t ' )  cos[ f i ( t ' ) - f l ( t )+f l ( r -  t ')l dt'. (46) 

I: 
5,: 
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To compare these two functions let us consider the specific form of the strength 
function as given by (4). One has f,( t )  = .i, tan-'  t and the evaluation of the integral 
corresponding to f2( t )  gives 

Here T(z) denotes the Euler gamma function of a complex argument. Some particular 
cases are: 

I- 

? .=O p ( r )  = [ j l +  2 - 9  

- 
9'1 + T 2  

cosh( 7 ~ 7 1 2 )  
f=' 2 

~ 

?.=1 
sinh( n-r) 

other cases are given in [15]. In fact, an explicit formula can be given provided .?. 
equals an  integer or  a half-integer. Notice that if ? > O ,  the function p ( t )  decreases 
exponentially and  this guarantees the convergence of the above integrals r (  t ) ,  q (  t ) .  

Further, it will be useful to designate through ; ( t )  and < ( t )  the integrals of the 
functions r ( t ' )  and q ( t ' )  from zero to t. Eventually, let r, be the asymptotic value 
Iimt+= r ( t ) .  Similar meanings appertain to the symbols q,, ;, and &. 

The inspection of (45) shows that the function r ( t )  is a monotonically increasing 
function. So is q(  t )  provided 7 < 1. If f 3 1 the cos function in (46) changes the sign 
and  the function q ( t )  acquires a local maximum. This is demonstrated in figure 1 by 
means of the numerical evaluation of the respective integrals r (  t )  and q(  t ) .  As for the 

0 10 20 30 40 50 
T.fW< 

Figure 1. The time dependence of the integrals r ( f )  ( fu l l  curves),  q ( f )  (broken curves) for 
f = 0 and  7 = 0.5 ( the two topmost curves), = 1 ( the central pair of curves) and  7 = 2 
( the bc'ttom pair of curves). 
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asymptotic behaviour of these functions, if f > 0, the two numbers r X  and qr are finite 
and  generally r ,  # q r .  If f = 0, then r ,  equals a finite constant for T > 1 and rr = 00 
for T G 1. On the other hand, for qs and f = 0, one gets qr = cc for .i, < 1, ql- = 7 1 2  
for 7 = 1 and qs = 0 for .i/ > 1 [ 11. Thus in the case f = 0, T 5 1 the asymptotic behaviour 
of the functions r ( t )  differs from that of the function q ( t ) .  

The numerical inspection of the object function, s ( t ) ,  is exemplified in figure 2 .  
Here, the inverse Laplace transforms of the functions (26) and  (32) are plotted. In 
principle, these expressions are valid for small A. However, provided T<< 1, we have 
proved them to hold for a general as well. 

O 1  A 

T = i W c  

Figure 2. The  time dependence of the function ~ ( f ) .  The full curves represent the WTA'")  

result (i.e. the calculation is based on ( 2 6 ) )  and  the broken ones demonstrate the dependence 
in the WTA"'  ( the calculation is based on (32)). The parameters used are: ?=0.5,  d = 0.2 
and  3 is denoted in the picture. 

Let us now briefly contrast our WTA"' against some other approaches going beyond 
non-interacting-blip approximation. Considering the exact expression for the particle 
coordinate, s(  t ) ,  as given by (34), (36)-(40), one has two global strategies for performing 
the summation in (36). First, analysing the relations between different blips and  
sojourns, one can approximate the contribution of every path in a physically motivated 
manner so as to take into account just such configurations of the blips and sojourns 
which are supposed to give a significant contribution to the integrals occurring in (36). 
This category comprises the WTA' ' I  which takes into account isolated-blip contributions 
and  blip-preceding-sojourn interactions. However, it is also possible to neglect all 
blip-soujourn interactions and take into account (besides isolated-blip factor) the 
neighbouring blips interactions. This possibility was investigated in [ 171. In our G M E  

scheme it would correspond to neglecting all terms in the expansion (18) besides 
X ' ' " ( t )  and 5Y'2 ' ( r ) .  Second, in a specific domain of parameters, one can pick up  
certain relevant set q f p a t h s  and treat these paths exactly, i.e. with all possible blip- 
sojourn and  blip-blip interactions. Recent works [30-321 have found the procedure 
for the physical identification of the 'relavant paths'-it is closely connected with the 
real-time functional-integral analysis of the original problem. It is then actually possible 
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(e.g. in the domain .i,= 1) to sum up  all such defined paths and  to obtain analytic 
formulae which are not accessible within the first strategy. 

Eventually, let us comment on a subtle problem of the possible symmetry breaking. 
The question is whether the asymptotic value of the function s(  t ) ,  i.e. the number s, , 
is zero or not [9]. Usually, since lim,+= s( t )  = lim,,o zs(z), one investigates the small-z 
properties of the complex function s(z)  with Rez > 0. These are, in principle, given 
by the exact expression (16). However, one does not know the functions u,(z), w,(z) 
and  so the crucial point is whether the small-z behaviour of s ( z )  as given by (16) 
could be affected by performing the WTA'") or the WTA"'. For example, as follows 
from the discussion in $ 3, the terms u3w,, u3w2, u3u4 equal zero in both the WTA'"' 

and WTA"' and  it is only in the W T A ' ~ )  that they enter the formula (16). Thus, as 
regards the possibility of the asymptotic localisation, the WTA'") or WTA" ) conclusions 
have to be accepted with certain circumspection. 

Having this remark in mind, it will not be so surprising that the WTA") predicts 
somewhat different asymptotics as compared with that given by the WTA"). In  the 
WTA'"), one works with the final expression (26) and this gives 

Since r (  t )  is for any parameter a non-decreasing function, we have is =CO, i.e. s, = 0: 
there is no asymptotic localisation in the WTA")). 

Next, let us consider the WTA"'. Formula (32) yields 

Now, for & to be a finite number, two conditions have to be fulfilled: q,=O and 
convergence of q ( t )  to this final value must be sufficiently fast. Analysing these 
conditions themselves, one can use the observation that the function q( t )  has the same 
asymptotics as the somewhat simpler function 

U( t )  = p (  t ' )  cos[fl( t ')] dt ' .  J1: 
The reason is, roughly speaking, that f l ( t  - t ' )  = f l ( f )  for large enough t and small 
enough t' (for which p (  t ' )  3 E > 0 where E is a sufficiently small number). The condi- 
tions for the U", to be finite were found in e.g. [ 1, 15, 161: ?. = 0 and .i, > 2. Thus also 
our WTA"' predicts asymptotic localisation in the range ?. = 0 and 7 > 2. On the other 
hand, the short-time behaviour of the function q(  t )  is different from that of the function 
u ( t )  and, consequently, the number ix itself is different from the value [9, 151 U",= 
[ w f (  7 - 1)(  .i, -2)]-I. For instance, the parameters ? = 0, .i, = 4 give U", = 1.667/wf 
whereas the numerical calculation of the double integral G( t )  shows Gm = 1.002/wf. 
However, we recall that it could well be that this 'WTA") localisation' disappears in 
the WTA"). We have given both the physical and formal arguments supporting this 
hypothesis. 

Summarising, the main conclusions of the present work are as follows. 
(1) Using the G M E  technique, we obtained the general form of the exact solution, 

equation (16). 
( 2 )  We have developed the connection between the class of approximations based 

on the A expansion of the memory operator and  the functional-integral description of 
the exact solution. 
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(3) In particular, our  WTA"" is equivalent to the commonly used non-interacting- 
blip approximation. Contrary to this approximation, the WTA") takes into account, at 
least to some extent, the correlations between the blips and  sojourns. 

(4) The numerical calculation was given which reveals the differences between the 
specific approximations used. 

In  conclusion, our work is yet another example of the power of the G M E  method 
in dealing with simple microscopical models of relaxation processes. 
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Appendix 1 

At several places in the main text we deal with the similarity transformations and/or 
with the factorisation of the exponentials involving the reservoir operators. As a rule, 
these procedures are performed separately for each index i = 1 , .  . . , M ,  i.e. for each 
individual mode of the reservoir. In  this appendix, we restrict ourselves to just one 
fixed reservoir mode. Hence we drop the index i and we designate U = K / W .  

The procedures mentioned involve just the five reservoir operators (see below) and 
the essential point is that these operators form the Lie algebra [29] .  Table 1 gives their 
definitions as well as their mutual commutators. 

Table 1: The commutators are  given in the form [row, column]. 

Y d  Y 3 % 

6p = [ B+B, *] 0 Y 9? JU 3 
~ = ; ! u { B + + B , * }  -Y o 0 0 U'$, 

Y - ~ u { B + - B , * }  -Y? o 0 --U'$, 0 
Y = $ u [ B + + B , * ]  - 6 ~  o U'$, 0 0 
J1( 1 Zu[B'-B, -1 -3 - u ' a , <  0 0 0 

This Lie algebra and/or  its subalgebras can be treated by the parameter differenti- 
ation method. Wilcox's article [ 2 9 ]  presents the modus operandi at great length. Here 
we give merely the list of identities needed in the main text. 

(1) Let a be an arbitrary complex number. Then the following factorisation take 
place 

exp[a(2?* S)] = exp(a2?) exp[*Y sinh a * a( 1 -cosh a ) ]  

e x p [ a ( 9 * % ? ) ] = e x p ( a B )  exp[*% sinh a * Y ( l - c o s h  a ) ] .  
( A l . l )  
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(2) Let a, P be two complex numbers. By means of the following formulae, the 
left commutation of the operator e x p ( y 3 )  can be done: 

e x p ( a T + P % )  e x p ( y 9 )  

=exp(yY)  exp[(a  cosh y - P  sinh y ) F + ( - a  sinh y + P  cosh y ) % ]  
(A1.2) 

exp( CY% + P 9 )  exp( y 2 )  

= e x p ( y Y )  exp[(a  cosh y - P  sinh y ) % + ( - a  sinh y + P  cosh y ) Y ] .  

(3) Let a,  P, y and 8 be arbitrary complex numbers. Then 

exp( CY% + ~ 9 )  exp( yF+ 8%) = exp( y Y +  8%) exp( a% + PY)  exp[ U'( a8 - ~ y ) ] .  
(A1.3) 

(4) Let p, I/ be arbitrary complex numbers and rR  be a one-mode version of the 
canonical density matrix in the initial condition (9). Then 

(A1.4) 

Appendix 2. 

Theorem. Let % be an  operator in the reservoir Liouville space, IX) an element of this 
space and p,=$R-( rR) ( lR I  the projector. Let us define the three functions a ( t ) ,  
b ( t )  and c ( t ) :  

a ( t ) =  ( 1 R /  exp(-i t%)lrR) (A2.1) 

b ( t )  = (lRl%exp(-it%)lX) (A2.2) 

e(  t )  = (1R/ 3 exp( - i tP ,  9)lX). (A2.3) 

Then their Laplace transforms fulfil the equality 

b ( z )  = z a ( z ) c ( z ) .  (A2.4) 

Pro05 First, we expand the above functions into their Taylor series. We have e.g. 
a ( t )  =Z:=, (-ir)"aq/n! where the moments a,, = ( l R / % n l ~ R ) ,  n =0 ,1 , .  . . were intro- 
duced. Then using the definition of the projection operator, the moments a,,, b,, c, 
are shown to obey the equalities b,, = Z:=,) akc,-h, n = 0,  1 ,  . . . Eventually, the Laplace 
transforms of the Taylor series are used and the terms corresponding to the same 
powers of l / z  are compared. 

Particular case. If IX) = 9 1 ~ ~ )  then b(  t )  equals to the negative second derivative from 
a ( ? ) .  If, in addition, (lRI%I?TR)=o, one has b ( z ) = - z ' a ( z ) + z .  Therefore, in this 
particular case, (A2.4) acquires the form c ( z )  = - z +  l / a ( z ) .  This was used in connec- 
tion with (24) in the main text. 
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